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Abstract:  We suggest using distributed fiber Bragg sensors systems which were 

developed locally at Langley Research Center carefully placed on the wing surface to 

collect strain component information at each location. Then we used the fact that the rate 

change of slope in the definition of linear strain is very small and can be treated as a 

constant. Thereby the strain distribution information of a morphed surface can be reduced 

into a distribution of local slope information of a flat surface. In other words a morphed 

curve surface is replaced by the collection of individual flat surface of different slope. By 

assembling the height of individual flat surface, the morphed curved surface can be 

approximated. A more sophisticated graphic routine can be utilized to restore the curved 

morphed surface.  With this information, the morphed wing can be further adjusted and 

controlled. A numerical demonstration is presented. 

 
1. Introduction 
 
It is well known that for different conditions of flight, a combination of different lifting 

surfaces is needed, such as wing, flap, and aileron. To further maximize efficiency, the 

idea of a morphed wing has been circulated for some time which covers a lot of technical 

areas, such as variable area, variable sweep, and/or variable shape (camber). In this short 

article, we limit our discussion to the last topics. Despite of the high interest, however 

only a limited number of articles have addressed this topics of shape sensing1-4. Before 

we can control the shape of the wing we have to possess the total information of the 

wing, especially the contour of the wing surface.  In order to interrogate the condition of 



a morphed wing we propose using distributed Bragg fiber sensors embedded on the wing 

surface to obtain the strain distribution on the wing. The distributed Bragg fiber sensor5, 

developed locally by the Langley Research Center, has been proven to be ideal: light 

weight, small in size (typically 5 mm in length), immune to harsh environment, and easy 

to implement. The fiber sensor system is put on the wing when the wing is in a relaxed 

state, in which case, the sensor at each location registers zero strain. Once the wing is in a 

morphed (changed) state, each location will register a different strain reading. By 

processing the strain data the local curvature value is obtained. By assembling the values 

of local curvature for all locations, the contour shape of a morphed wing can be deduced.  

2. Theory 

The distributed optical fiber Bragg sensor system developed by the Langley Research 

Center has been proven very useful to measure strain for large aerospace structures. The 

sensors are embedded on the surface of the structure without harming its mechanical and 

aerodynamic performance, because of their light weight and immunity to electromagnetic 

disturbance.  Fig.1, shows a section of wing projected onto the z-x plane, or the cross 

section of a wing at a certain span distance. The curves z2 and z1 are two surface curves 

representing the morphed state and natural state, respectively, say, of an upper surface of 

chord.  

 2



z Z2 

Z1 

xy 

  

 
    Fig. 1  A section of wing surface, z1 represents the natural state; z2  represents the 
morphed state  
 
 
 
The surface of a wing in a morphed state can be represented by the totality of all points of 
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as the boundaries of a wing or specifically a special section of the wing. While in its 

natural state (or un-morphed state), we have 1 1( , )z z x y= . If the sensor system was placed 

on the surface while the surface in its natural state, then the sensor system shows zero 

strain at every location. While the surface is its morphed state, it is stretched or 

compressed, either due to bending or other artificial means, such as forcing at certain 

places by mechanical means. The optical sensor will register a non-zero strain reading 

corresponding to the stressed state at each location. Since current state-of-the- art optical 

fiber Bragg sensors only can measure the strain in one dimension, we have to carefully 

lay the fiber sensor either parallel to x or y direction. In other words, we measure the x 

component strain and y component strain simultaneously.  Suppose we measure the x 

direction strain at a certain location, we have6 
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Where, we have the basic definition of linear strain in x direction as xε  expressed as the 

difference of the arc length in the morphed state and natural state. Where x1 and  x2 are the 

limits of the linear sensors. xε  can be determined accurately using our optical Bragg 

sensor if the strain value is small or the strain is uniform. However, when the strain value 

is large and non-uniform (say, on the order of 10-2) the optical Bragg sensor sometimes 

gives a non-unique value and has to be determined judiciously7. 

Equation (1) is exact, however if we approximate Eq. (1) by assuming the variation of the 

partial derivative is minute within the limits x1, and  x2 , so the integrand assuming an 

average value can be taken out of the integration. This is our first approximation. We 

have 
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is known ahead of time and xε is the measured value. Therefore 2  z
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value is 

obtained. 
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By the same token, 2  z
y
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value is obtained. 

We noticed that by taking this linearization process, we have successfully inverted the 

problem. Namely, the surface linear slope can be expressed in term of the local strain as 

shown as in Eq. (2)  

We carefully lay the sensors at the location, max max, 1, , , 1,i jx i i y j j= = ,so ,i j
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, ,

2  
i j i jz and 2z
x y

∂ ∂
∂ ∂

 are obtained.  Let’s reproduce Eqs. 

(2) where the index i, j refer the station location. 
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Eq.(3) has a simple solution, i.e., an equation of linear plane 
 

2 1 2z c x c y c= + + 3          (4) 
 
 Where the superscript index i,j have been removed; c1, and c2, are constants defined by 

Eq. (3). c3 is a constant referred as the vertical height at that particular location, but we 

have no accurate information to obtain this value. Since the equation (3) involves the 

square root of strain value, care has to be taken that when the strain is negative 

corresponding to compression, the c1, c2 values are taken as negative pure real numbers. 

Originally, the plane is limited to the domain covered by sensors, however, since it is a 

plane, it can be extended.  A natural extension could be chosen as the mid-point between 
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the next sensor location and boundary of the plane. The layout is shown in Fig.2.  Eq.(4) 

tells us the contour of the wing is reconstructed by a series of  rectangular 

planes, ( or rectangular tiles) i.e., the  
 
 
 
 
 

 
 
 
 
 
 

Fig. 2, Sensor layout diagram. The area enclosed by the dashed borders forms a plane 
determined by the strain. The sensor is indicated by the arrows.  
 
 
derivatives are  not continuous between the plane boundaries.  If we carefully place the 

sensors at the intersection of grid points, say, at equal distance (nevertheless, that is not 

necessary) then around that point, a square of plane is formed which gives two important 

data, i.e., the slope of square plane along x and y direction, c1 and c2. In order to 

reconstruct the contour of the wing, we still need the value of c3, which can be 

approximated by  which is the height of location in the natural state. This is another 

assumption in our approximation. What we are saying is that the change of strain is 

primarily and uniquely due to the change of the average slope of the arc. With all the 

information, we can reconstruct the whole contour of the wing in the morphed state.

,
1
i jz

  

 
4. Deficiency of the Model 
 
What we have done is to replace the strain by the average slope of the area covered by the 

sensor. Then, we ask the question what happens if the sensor is on top of a surface which 

is absolutely horizontal and nevertheless, the strain is not zero. Another question is based 
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on Eq.(3), given the strain value, we can not tell if the slope is positive or negative. 

However, if we place three sensors in a row and if the first one registered positive slope 

and the third one registered negative slope, then we can infer that somewhere in between 

them the surface is completely flat. Fortunately for the morphed wing case, the 

deformation is well kept in a fixed range and a lot of experiments and testing are needed 

to resolve the ambiguities. 

 
5. Numerical Model  
 
To demonstrate numerically how the measured strain values generate the morphed 

contour surface, we build a panel of dimension 6 x 5 which has 30 unit cells. Rather 

placed the sensor in the middle of cell, we place at the corner of the cell. At each corner, 

the optical distributed sensors were embedded which simultaneously and independently 

measured the x and y component of strain. To make everything simpler, we chose the un-

morphed surface as a flat surface, so from Eq. (3) 
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If we decide to poke the panel at the location of the center of cell C32 , i.e., the cell in 

column 3 and row 2. Accordingly, the nearby sensors would register a much higher 

values than the sensors far away. The following mocked up sensor values distribution are 

adopted to demonstrate the idea. 
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Table 1 Strain Values  
X component  
 
0.0001 0.0001 0.0001 0.0002 0.0001 0.0001
0.0001 0.001 0.002 0.0015 0.001 0.0001
0.0001 0.0005 0.0017 0.0014 0.0012 0.00014
0.0001 0.0005 0.001 0.001 0.0005 0.00014
0.0001 0.0001 0.0001 0 0 0 
Y component  
 
0.0001 0.0001 0.0001 0.0002 0.0001 0.0001
0.0001 0.001 0.002 0.0015 0.001 0.0001
0.0001 0.0005 0.0017 0.0014 0.0012 0.00014
0.0001 0.0005 0.001 0.001 0.0005 0.00014
0.0001 0.0001 0.0001 0 0 0 
With this strain distribution, we generate the contour surface shown below. 
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Fig.2 surface contour 

 
6. Conclusion  
 
This is the first attempt to analyze and control a morphed wing using distributed optical 

Bragg sensors to measure the local strain due to the deformation of wing surface. Based 

on the measured strain values, we have used a physical (and drastic) approximation to 

recreate the morphed contour, not as a continuous surface, but as a zigzag first order flat 

surface. With the help of graphic software we can make a smooth, continuous contour 
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surface. We believe this approach to be not only feasible but also practical. Because the 

distributed optical Bragg sensor system is light weight, it is quite easy to implement 

hundreds or thousands of sensors embedded on the wing. However, we have to pay 

attention to the following aspects.  

 
(a) The readout and information process almost are instantaneous and accurate, provided 

the whole operation is carried out in a laboratory setting. However, when the system is 

airborne, subjected to dynamic vibration, it may impose some difficulties in the laser 

response and readout system. A reliable, steady, and robust laser readout system is highly 

desirable. 

 
(b) We further point out that the morphed state also depends on other variables which 

may be minor, such as temperature and pressure, therefore careful calibration is 

important. 

(c) Careful and strategic planning is needed for the choice of embedded sensor location. 

We suggest placing the sensors in the areas of aerodynamically sensitive areas, such as 

the leading edge and quarter chord areas. 

(d) Based on this algorithm, a morphed wing is replaced by a collection of zigzag surface 

of rectangular tiles. However, smoothing graphic software can be used to show the 

morphed wing as a continuous surface.  We emphasize that it is not important that the 

reconstructed morphed surface looks exactly the same as the real one as long as the real 

surface can be inferred from the information of the reconstructed surface. 
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(e) Many laboratory and ground tests will be needed to verify this technique, so that a one 

to one correspondence between strain distribution and the contour information of the 

wing is firmly established. 

This is a simple and crude model, but we believe this technology can give us reliable 

information about a morphed wing. Many tests will have to be conducted, and of course   

the use of right software will be necessary to give a graphic representation. With this 

technique, we have established a one to one relationship between strain state and 

morphed state of a wing. 
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